二极管

两个极:

  • P(Positive)消极的;

  • N(Negative)积极的;

二极管的电子只能从 N -> P [等效于] 电流只能从 P -> N

P极

参杂3价硼,最外层7电子意图夺取一个电子形成8电子稳态。

image-20240726144223284

N极

参杂5价磷元素,形成P极,最外层9电子意图扔掉一个电子形成8电子稳态。

image-20240726143932733

二极管符号

  • 电子的方向从(负极N) -> (正极P),此时满足电子从P高电位 -> N地电位(满足能量守恒,释放能量)
  • 电子如果反向就会从P -> N,即PN结(增大)。

二极管符号

PN结:由于P和N结合处P中的P-Si参杂意图失去一个电子,B-Si参杂得到一个电子,此时形成PN结。PN层有两层,其中 P层带-电,N层带+电。电场方向从 左<-右。

正向导通电压:0.6-0.7V,想象一下,如果给上方的二极管通上小于0.6V电压,电子从负极流向正极,但电子电压小于0.6V,是不能通过PN结的,只有大于0.7V电子才可以通过这个PN结。

反向电压:如果将以上二级管正极接电源负极,负极接电源正极,就会出现下图的情况,P会区获得电子带负电,N区失去电子带正电,但双双都满足8电子稳态,不再允许自由电子移动。

image-20240726162235897

此图是反向电压已经达到二极管最大承受时候的图,小于最大电压,PN结应该不会那么大范围。

三极管

三极管(又称晶体管)是一种具有三个电极的半导体器件,用于放大或开关电子信号。
基极-发射极电压大于0.6-0.7V(硅材料),基极-发射极结将导通,电子从发射极流向基极,并在集电极-基极间的高电压下被吸引到集电极,从而形成集电极电流。
N(Negative)型半导体,参杂P(磷)元素; P(Positive)型半导体,参杂B(硼)元素

参考:

bilibili-华秋商城:终于有人讲了,凭什么三极管能放大?

bilibili-郭天祥老师:【快速分辨三极管-电路设计干货】

bilibili-訦香:【作死物理大讲堂】BJT三极管入门手册-中字-个人翻译

两种类型的三极管

三个极

  • 发射极(Emitter, E):负责发射载流子,一般会同时接入两个电源的正极/负极。
  • 基极(Base, B):B电压越大,EC之间的电流越大。
  • 集电极(Collector, C):收集从发射极发出的载流子。

技巧

  • 识别三极管符号:参卡二极管符号,回忆二极管符号P->N(箭头尾P 箭头头N),再看三极管中也有箭头,可根据二极管标注箭头的PN,此时最后一个必是PNP的P/NPN的N,同时带有箭头的必为发射极。

NPN

相当于两个二极管尾部相连,符号就是这样演变的。

NPN三极管比PNP三极管更常用。这是因为:

  • 集成电路的普遍性: 大多数集成电路采用NPN型晶体管,因为NPN型晶体管的制作工艺更成熟,成本更低。
  • 信号源的特性: 大多数信号源是正电压源(共阴),而NPN型晶体管更适合与正电压源配合使用。

PNP

相当于两个二极管头部相连,符号就是这样演变的。

虽然NPN型三极管更常用,但PNP型三极管也有其独特的应用场景:

  • 与NPN型三极管互补: 在一些电路中,PNP和NPN型三极管需要成对使用,以实现特定的功能,例如,构成互补对。
  • 负电源电路: 在负电源电路中(共阳),PNP型三极管更适合。
  • 某些特殊场合: 在一些特殊的电路设计中,PNP型三极管可能具有更好的性能。

放大效应

在BJT中,集电极电流(I_C)与基极电流(I_B)之间存在一个放大系数β(通常为100左右),即:

𝐼𝐶 ≈ 𝛽 ⋅ 𝐼𝐵

发射极电流 IE 与基极电流 IB 和集电极电流 IC 之间的关系是:

訦香IE = IB +IC

总电流关系为:

IE=IB+βIB=(β+1)IB

工作过程

  • 当基极-发射极电压 VBEV_{BE}VBE 小于-0.7V时(硅材料),基极-发射极结导通。
  • 空穴从发射极注入基极区。由于基极区非常薄且掺杂浓度低,大多数空穴不会与电子复合,而是穿过基极区到达集电极。
  • 集电极-基极间的电压(VCEV_{CE}VCE)将这些空穴拉到集电极,形成集电极电流(ICI_CIC)。

MOS管

MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor,简称MOSFET)是一种场效应晶体管,广泛应用于电子电路中。MOS管是利用电场效应来控制半导体的电导率,因此可以用于放大或开关电子信号。

Electronics Tutorials:The MOSFET

bilibili-爱上半导体:【另类方式讲解晶体管,让你真正理解,MOS管到底是如何工作的?】

bilibili-车博士汽车电路培训:【MOS管里面有个寄生二极管,它是怎么产生的,与制作工艺有关系】

bilibili-维库电子市场网:【MOS管里竟然有二极管?绝大多数人不知道它的作用!】

MOS从结构上分为N沟道和P沟道,从沟道表面参杂与否来决定增强型和耗尽型。

transistor-tran20a

  • 栅极(Gate):通过施加不同类型的电压来控制通道的导通与关闭,通过施加电压的大小来控制通道的电导率。

  • 增强型

    • 源极(Source)

      • N沟道:电流的输出,电子输入端

      • P沟道:电流的输入,电子输出端

    • 漏极(Drain)

      • N沟道:电流的输入,电子输出端
      • P沟道:电流的输出,电子输入端
  • 耗尽型

    • 源极(Source)
      • N沟道:电流的输入,电子输出端

      • P沟道:电流的输出,电子输入端

    • 漏极(Drain)
      • N沟道:电流的输出,电子输入端
      • P沟道:电流的输入,电子输出端

看到这里我也麻了🤣,千万不要死记硬背,看我后面分析。

阈值电压Vth(Cut-off电压)

大小受到多种因素的影响,包括制造工艺、器件结构和工作温度等。

增强型MOSFET(Enhancement-mode MOSFET)

  • 阈值电压(Vth)通常是正值(对于N沟道MOSFET)或负值(对于P沟道MOSFET)。
  • 对于N沟道增强型MOSFET,Vth通常在0.2V到2V之间。
  • 对于P沟道增强型MOSFET,Vth通常在-0.2V到-2V之间。

耗尽型MOSFET(Depletion-mode MOSFET)

  • 阈值电压(Vth)通常是负值(对于N沟道MOSFET)或正值(对于P沟道MOSFET)。
  • 对于N沟道耗尽型MOSFET,Vth通常在-0.5V到-3V之间。
  • 对于P沟道耗尽型MOSFET,Vth通常在0.5V到3V之间。

N沟道MOS管

N沟道MOSFET中包含耗尽型和增强型

  • 增强型为常开开关(“Normally Open” Switch、”Normally Off” Switch)
  • 耗尽型为常闭开关(“Normally Closed” Switch、”Normally On” Switch)

image-20240807170536815

记忆技巧

  • 图中N沟道MOS符号是指向内(Negative)
  • 图符号为增强型nMOS符号,DS之间的连接处于断开(Normally Off)状态

N沟道增强型MOSFET

由于N沟道增强型MOSFET的P型半导体通常是衬底材料。这种P型半导体是通过掺入受主杂质(如硼)制备的,这些杂质在晶格中引入了空穴,使得P型半导体中的多数载流子为空穴,而少数载流子是电子。

然而一些说法少数 电子/空穴 是来自 源/漏极 附近形成的PN结附近的载流子。

下图中已经是N沟道增强型MOSFET N之间的通道已经形成(导通状态),你会发现源极(S)和衬底之间用导线(虚线不存在)进行连接,衬底与导线连接区域一般沉积一层金属。这样做的目的:

  1. 保持电位一致: 确保源极和衬底的电位相同,避免源极与衬底之间的PN结正向导通,使得源极漏极得以区分。
  2. 避免寄生效应: 防止在MOSFET工作时产生不必要的寄生电流(如寄生双极效应),从而确保MOSFET的正常开关特性。

N沟道增强型MOSFET

当栅极电压+VGS(即G-S)增加到某个阈值电压(Vth)时,P型半导体表面的电子浓度变得足够高,形成一个反转层。这些电子形成一个带负电的P型区域(物理特性相当于N),使得源极和漏极之间形成一个导电沟道。

寄生二极管

仔细观察的你会发现无论是 N/P MOSFET符号中都会有一个二极管的符号,当然这个二极管并不是MOS制造过程中加入的,它是MOS本身的属性,是由于源极(S)和衬底(Substrate)连接形成的单向导通性。

试想一下,如果源极和衬底不进行连接,那么三极管的源极和漏极将不会得以区分,就不会像开头死记硬背的内容那样 N/P型 电子/电流 运动有一定的方向性,电流无论从源/漏极进入都可以进行导通。

源极和衬底连接后,形成 左边NP区域导通,右区域形成PN结,即:寄生二极管

寄生二极管原理图

于是N增强型导通状态下:

  • 电流从S到D(即电子从D到S)二极管导通,MOS管失去开关的意义。
  • 电流从D到S(即电子从S到D)二极管截止,MOS管正常工作。

N沟道耗尽型MOSFET

耗尽型MOSFET在没有施加栅极电压时就已经存在导电沟道。P型半导体作为衬底表面浅层区域掺入N型杂质,来形成一个导电N沟道(即默认导通)。

通过施加适当的-VGS栅极电压,可以耗尽(赶走)电子,增加沟道中的载流子(空穴)浓度,从而调节器件的导电性,相当于变成了N沟道增强型未通电状态(使其关闭)。

P沟道MOS管

P沟道MOSFET中也包含耗尽型和增强型

  • 增强型为常开开关(“Normally Open” Switch、”Normally Off” Switch)
  • 耗尽型为常闭开关(“Normally Closed” Switch、”Normally On” Switch)

image-20240807170648187

记忆技巧

  • 图P沟道MOS符号是指向外(Positive)
  • 图符号为增强型pMOS符号,DS之间的连接处于断开(Normally Off)状态

P沟道增强型MOSFET

由于P沟道增强型MOSFET的N型半导体通常是衬底材料。这种N型半导体是通过掺入受主杂质(如磷)制备的,这些杂质在晶格中引入了自由电子,使得N型半导体中的多数载流子为电子,而少数载流子是空穴。

当栅极电压-VGS(即G-S)增加到某个阈值电压(V_th)时,N型半导体表面的空穴浓度变得足够高,形成一个反转层。这些空穴形成一个带正电的N型区域(物理特性相当于P),使得源极和漏极之间形成一个导电沟道。

寄生二极管

源极和衬底连接后,形成 左边NP区域导通,右区域形成PN结,即:寄生二极管

于是P增强型导通状态下:

  • 电流从D到S(即电子从S到D)二极管导通,MOS管失去开关的意义。
  • 电流从S到D(即电子从D到S)二极管截止,MOS管正常工作。

P沟道耗尽型MOSFET

耗尽型MOSFET在没有施加栅极电压时就已经存在导电沟道。N型半导体作为衬底表面浅层区域掺入P型杂质,来形成一个导电P沟道(即默认导通)。

通过施加适当的+VGS栅极电压,可以耗尽空穴,增加沟道中的载流子(电子)浓度,从而调节器件的导电性,相当于变成了P沟道增强型未通电状态(使其关闭)。

增强型MOSFET

导电通道是轻度掺杂或不参杂(会有少量自由电子),使其不导电。

在栅极施加电压时,通道导电性被增强,形成导电通道(使其导电)。

相当于一个常开开关。

增强型MOSFET或称eMOSFET更常见。

transistor-tran37

增强型MOS晶体管的电路符号使用断开的沟道线来表示常开(Normally Open)的非导通(即Normally Off)沟道。

transistor-tran19

N沟道

下图中VGS(栅源极电压)大于VTH(Cut-off电压)时,此时栅极称为一个跨导器件。

image-20240802154727715

对 n 型 eMOSFET 施加正(+ ve)栅极电压会吸引更多的电子流向栅极周围的氧化层,从而增加或增强(因此得名)允许更多电流流动的沟道的厚度。这就是为什么这种晶体管被称为增强模式器件,因为应用栅极电压增强通道。

  • +VGS使晶体管“导通”
  • 0或-VGS 开关晶体管“关闭”

P沟道

对于 p 沟道增强 MOS 晶体管,情况正好相反。

  • 0或+VGS使晶体管“关闭”
  • -VGS 开关晶体管“导通”

耗尽型MOSFET

通常在不施加栅极偏置电压VGS = 0 的情况下“开启”(导电),施加电压可关闭通道。

耗尽型MOSFET,不如增强型MOSFET常见。

transistor-tran36

耗尽型MOS晶体管的电路符号使用连接的实线沟道线来表示常闭(Normally Close)的导通(即Normally On)沟道。

transistor-tran35

N沟道

对于n沟道耗尽型MOS晶体管,负栅源电压-VGS将耗尽其导电沟道的自由电子(因此得名),从而使晶体管“关断”。

  • -VGS 开关晶体管“关闭”,意味着更少的电子和更少的电流。

  • 0或+VGS“导通”,意味着更多的电子和更多的电流。

P沟道

对于p沟道耗尽型MOS晶体管,正栅源电压+VGS将耗尽其自由空穴的沟道,使其“关断”。

  • +VGS 开关晶体管“关闭”,意味着更少的电子和更少的电流。

  • 0或-VGS “导通”,意味着更多的电子和更多的电流。